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The first 27 terms in a series expansion for the profile of a solitary wave are computed. 
From this, series expansions for the wave amplitude, mass and potential energy are 
obtained. A previous study indicated that the partial sums of these series converged 
for small- to medium-amplitude waves and that the diagonal Pad6 approximants 
converged for waves of all amplitudes. The data derived here show that this is not 
the case and that apparent convergence of Pad6 approximants can be misleading. 

1. Introduction 
I n  recent years, several methods have been used to  study the properties of 

large-amplitude solitary waves. The wave of maximum amplitude, in particular, has 
been the focus of much attention. Longuet-Higgins & Fenton (1974) computed the 
values of several parameters for solitary waves of all amplitudes (up to  the maximum) 
by means of partial power series and Pad6 approximants. Witting’s (1981) study was 
based on a Fourier-series technique, with a singular term giving the sharp crest of 
the highest wave. Williams (1981) investigated periodic waves of maximum height 
by including two terms designed to produce sharp crests of the proper form. His 
large-wavelength data may be applied to solitary waves. Hunter & Vanden-Broeck 
(1983) extended the work of Lenau (1966), which also incorporates a singularity. The 
data of Pennell & Su (1984, hereinafter referred to  as I), which are based on a 17-term 
series expansion, agree with those of Longuet-Higgins & Fenton but differ from those 
in the other aforementioned works. 

In  this paper we obtain the first 27 terms in a series expansion for the solitary wave. 
Here, however, we do not observe the convergence of the Pad6 approximants for the 
momentum and potential energy of very high waves that was indicated in I. The Pad6 
approximants for the amplitude of the highest wave do appear t o  converge, although 
not to  the value found by Williams, Witting and Hunter & Vanden-Broeck. If  the 
latter value is assumed to  be correct, as seems extremely probable given the excellent 
agreement among the three methods, then we may draw two conclusions: values 
obtained by Pad6 approximants based on only a 27-term series expansion are 
incorrect ; and a sequence of Pad6 approximants may diverge even when it appears 
to  be converging. 

2. Formulation of the problem 
We consider the two-dimensional motion of a solitary wave on the surface of an 

inviscid fluid in an open channel with a horizontal bottom. We make the flow steady 
by using a frame of reference which moves with the wave speed c. Furthermore, we 
assume that the flow is irrotational and that the fluid has uniform density. Let the 
x-axis lie along the channel bed in the direction of the wave’s propagation and take 
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the y-axis vertically upward, with the origin lying beneath the wave crest. The shape 
of the free surface may be described by the expression y = h,[l +c(x)], where h, is 
the depth of the fluid in the undisturbed state. Since the flow is incompressible and 
irrotational, there exist a harmonic velocity potential 9 and a harmonic stream 
function $. Before proceeding with the formulation, we non-dimensionalize the 
problem by introducing the variables x' = kx, y' = y/h,, 4' = k$/c and $' = $/ch,. 
(For simplicity of notation, we henceforth drop the prime from each dimensionless 
variable. ) 

We find it convenient to use 4 and $ as independent variables, with $ = 0 on the 
free surface, $ = - 1 on the channel bed and 4 = 0 at the wave crest. In the interior 
of the fluid, the continuity equation must be satisfied : 

K2ygg + y** = 0 ( - 1 < $ < 0, - a < 4 < a). (2.1) 

y = O  on$=-1 ,  (2.2) 

(~-l-fF~)[~~(y+)~+(y~)~]+fF~ = 0 on $ = 0 (2.3) 

and y + l + $  as 1+1+co. (2.4) 

(Here K = kh,.) In  addition, the flow must satisfy the usual boundary conditions: 

(Here F 2  = c2/gh,.) Equation (2.2) says that the channel bed is a streamline, (2.3) ie 
Bernoulli's equation applied at the free surface (ignoring surface tension) and (2.4) 
says that the fluid approaches a state of uniform horizontal flow as 141 (or 1x1 ) becomes 
very large. We must find a function y(4, $) which satisfies (2.1)-(2.4). 

We begin by expanding y as a series in powers of $: 
m 

Y = S an (4) $"* 
0 

Since we are interested specifically in the solitary wave, we assume that 
00 

a, = 1 +E A , ( K ~ )  sech2" (*) 
1 

and 
m 

a, = 1 +E B , ( K ~ )  sechZn (t4). 
1 

Finally, we expand A, and B, as series in powers of K ~ :  

m 
A ,  = E A,, K~~ 

n 

and 

(2.5) 

(2.9) 

Equation (2.1) allows us to express a, in terms of a, and a, for n 3 2. Equation (2.2) 
can then be used to express a, in terms of a,. Finally, (2.3) can be used to solve for 
the coefficients A,, in the expansion for a,. We carried out these computations to 
27th order; the results are described in the next section. 

This procedure differs from I in the choice of independent variables. In  I, 4 and 
1,4 are regarded as functions of (x-ct) and y, and 4 is expanded as a series in powers 
of y. The advantage of using 4 and + as independent variables is that fewer 
computations are required; this is a consequence of the fact that we can expand about 
the free surface $ = 0. In the formulation used in I, the position of the free surface 
is not known in advance. 
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3. Computational results and discussion 
found by the procedure outlined above, we can obtain 

the first 27 terms in the series expressions for the amplitude, mws and potential 
energy of the solitary wave. The shape of the free surface is given by 

Using the coefficients An, 

C=Y(470)-1 

= a,(#) - 1 
03 m 

= z K~~ E An, sechen (#). 
1 1 

From this we can derive expressions for the amplitude E ,  mass M' and potential 
energy V': 

aJ m aJ 

E =  c(0) = x K 2 m z A n , m  = E € , K e m ,  (3.2) 
1 1 1 

and 

where 

and 

(3.4) 

J - a ~  Jho 

00 

= !@ [a,(#) - l]zaa,(#) d#. 2K 

Computed values for the coefficients E,, ,urn and v, for 1 G m G 27 are listed in 
table I .  

The accuracy of our computations is limited by accumulated round-off error. We 
use two methods for estimating this error at each order of our procedure. The first 
estimate is obtained by expanding the left-hand side of boundary condition (2.3), 
evaluated a t  4 = 0, in powers of K .  The coefficient of K~~ should be 0, so the deviation 
from 0 of this coefficient is a measure of the error at order n. Our second test makes 
use of the identity 

3V'-(F2-1)M = 0 (3.7) 

(see Stsrr 1947). We expand the left-hand side in powers of K~ and observe the 
deviation from 0 of the coefficient of KBn. These estimates indicate that the tabulated 
values of em, ,urn and v, are correct to the indicated degree of precision. 

In  I we claimed that series (3.2) gave two-digit accuracy even at e k: 0.52. This 
claim was based on the observed convergence of the first 17 partial sums of this series. 
From table 1, however, we see that the coefficients E ,  begin to grow rapidly in 
magnitude for m 2 18. As a consequence, the 18th-27th partial sums appear to 
converge only for E < 0.2. The oscillation of the signs of the coefficients em form 2 18 
suggests that convergence may be limited by a singularity on the negative K~ axis. 

Following the procedure employed by Longuet-Higgins & Fenton (1974) and I, we 
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n %I P n  Vn 

1 0.333 333 33 1.33333333 0.148 148 15 
2 0.138 888 89 0.444 44444 0.108641 98 
3 0.060 185 19 0.154 07407 0.06085832 
4 0.027 247 58 0.042 835 98 0.029322 36 
5 0.013 12908 0.003 732 75 0.012 269 41 
6 0.006 866 89 - 0.007 508 17 0.00413500 
7 0.003 94549 -0.00897396 0.000 683 02 
8 0.00248526 -0.00759542 -0.000561 68 
9 0.001 691 32 -0.00578643 - 0.000865 90 

10 0.001 21958 -0.00424961 - 0.000 8 19 53 
11 0.000 9 15 44 -0.00309745 -0.000673 67 
12 0.00070637 - 0.002 27 1 93 -0.000523 54 
13 0.000 554 81 -0.001 68753 -0.000398 28 
14 O.ooO443 59 -0.001 27207 -0.000301 71 
15 0.00035082 - 0.000 973 05 -0.000229 61 
16 0.00031303 - 0.000 75444 -0.000 17628 
17 0.000 107 63 -0.00059200 -0.000 13675 
18 0.000 96004 - 0.000469 39 -0.00010721 
19 - 0.004 962 26 -0.ooO 37554 - 0.000084 89 
20 0.038221 24 - 0.000 302 80 -0.00006782 
21 - 0.313 26858 - 0.000 245 81 -0.00005461 
22 2.8391377 - 0.000200 72 -0.000044 28 
23 -28.195957 -0.00016477 -0.000036 13 
24 305.751 7 -0.00013589 - 0.000 029 64 
25 -3606.72 - 0.000 1 12 53 - 0.00002443 
26 46 120.0 - O.OOOO93M -0.00002022 
27 -637500.0 - 0.00007803 -0.00001681 

TABLE 1. Coefficients in the expansions of E ,  M' and V' in powers of K~ 

N € M v' 
1 0.79411765 2.7268580 0.83969144 
2 0.831 46580 1.9598637 0.43638013 
3 0.83011677 1.9071471 0.41823134 
4 0.82598975 1.8995801 0.41479180 
5 0.832951 82 1.8969889 0.41338448 
6 0.832948 11 1.896 8947 0.412 95379 
7 0.831 69582 1.8966393 0.41287509 
8 0.829 254 79 1.894 8386 0.412 874 7 1 
9 0.827 586 78 1.888054 1 0.412 84289 

10 0.826777 37 1.8666594 0.41272344 
11 0.826391 93 1.8162183 0.41247453 
12 0.826 196 1.757 48 0.412059 
13 0.826 1 1.735 0.41 14 

TABLE 2. Values of [ N ,  N] Pad6 approximants at w = 1 

recast series (3.2)-(3.4) in terms of the parameter o = 1-Fz/[y~(0,0)]2 and use 
diagonal Pad6 approximants to  accelerate convergence. The [l, 11-[13,13] Pad6 
approximants for E ,  M and V' at w = 1 (the wave of maximum amplitude) are given 
in table 2. For purposes of comparison, we list in table 3 the values of E ,  M' and V' 
for the highest wave as computed by Williams (1981), Witting (1981) and Hunter 
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E M' V' 
Williams 0.833 197 1.970319 0.437 670 
Witting 0.833 2 1.9699 f 0.001 t 0.43758f0.00022 
Hunter & Vanden-Broeck 0.83322 

t This value is not given explicitly by Witting; it waa obtained by means of identity (3.7). 

TABLE 3. Values of E ,  M and V' for the highest solitary wave, as computed by Williams (1981), 
Witting (1981) and Hunter & Vanden-Broeck (1983) 

& Vanden-Broeck (1983). In I we noted that although the approximants seemed to 
be converging, in agreement with Longuet-Higgins & Fenton's findings, the evidence 
was not entirely convincing. This statement was based only on the [l, 1l-[8,8] 
approximants. From table 2 it is clear that this apparent convergence was illusory. 
Thus, this method may not give accurate results for waves of nearly maximum 
amplitude, at least not with only 27 series coefficients available. 

The author is indebted to the referees for several valuable comments and 
suggestions. 
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